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Abstract-In the theory of thermal radiation the radiant interchange between diffusely emitting surfaces 
is described by the use of angle factors. In this study the angle factors for the radiation transfer between 
the surface elements of two concentric cylinders are calculated analytically. This is achieved by replacing 
one surface integration in the equation for the angle factor by an integration over the direction of the 
radiation emitted from that surface. One result of the study is that analytical angle factors are given for 
geometrical transitions for which apparently no information is available in the literature. Furthermore, 
simplified expressions for the known angle factors are derived and tabulated in a consistent notation 
facilitating their use in practical applications. The angle factors thus obtained can be easily evaluated 

numerically and used in heat transfer or neutral particle streaming calculations in r z geometry. 

1. INTRODUCTION 

THE CONCEPT of angle factors (alternatively desig- 
nated as view factors, geometry factors, configur- 
ation factors, or shape factors) has been developed 
in the theory of thermal radiation to compute the 
radiant interchange between diffusely emitting 
surfaces [l]. In the past few years, angle factors 
have also been used successfully in combination with 
diffusion and transport codes to calculate the neutral 
particle streaming (neutrons or photons) through 
large voids surrounded by material regions [24]. By 
applying these hybrid techniques the problems can 
be circumvented which may arise when the common 
diffusion or transport codes are used to calculate the 
neutron or photon flux distributions in configurations 
with large voids. Thus, the diffusion theory fails in 
voids and the discrete ordinates method, which is 
mainly used for solving the transport equation, shows 
the problem of ray effects which may occur if there 
are isolated sources at the surface of the void and the 
void is strongly elongated in one direction [_5]. The 
idea of the hybrid techniques is then to use the proved 
diffusion or discrete ordinates methods for calculating 
the radiation transport in the material regions and 
the angle factors for treating the radiation exchange 
between the surface elements of the void regions. 

In practical applications the systems considered 
may exhibit many spatial meshes and thus area 
elements at the void surface. In such situations the 
evaluation of a large number of angle factors is 
required, which may amount to several thousands. 
This is a time-consuming process if the angle factors 
are calculated numerically and adequate accuracy is 
to be achieved. For this reason it is advantageous to 

have analytical expressions for the angle factors in 
these cases. 

Based on the investigations on this subject 
described in ref. [4] the analytical angle factors for the 
radiant interchange among the surface elements of 
two concentric cylinders are calculated in a systematic 
manner. One result is that analytical angle factors 
are obtained for geometrical transitions for which 
apparently no complete solutions are given in the 
literature. Furthermore, simplified expressions with a 
consistent notation are derived for the known angle 
factors facilitating their use in practice. In this paper 
the procedure for calculating the analytical angle fac- 
tors is described and the resulting expressions are 
compiled considering limiting conditions as well. 

2. CALCULATION OF THE ANGLE FACTORS 

The angle factor for the radiant interchange 

between two finite surfaces Fk. and Fk is defined by 

where r is a point on the surface Fkr df an infinitesimal 
surface element, and n a unit vector normal to the 
surface. The primed quantities are defined in the same 

manner for the surface 4,. Furthermore, the vector 
R is given by 

The angle factors for a given geometrical system are 
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NOMENCLATURE 

df infinitesimal surface element 

e unit vector 
F surface area 
H cylinder height 
n unit normal vector 
r radial coordinate 
r position vector 

R cylinder or circle radius 
t angle factor 
X dimensionless variable 
Y dimensionless variable 
: axial coordinate. 

Greek symbols 

1’ constant 

i; constant 
cosine of polar angle 

: polar angle 
azimuthal angle 

;c; angular direction. 

Subscripts 
B bottom 
I inner 
k incident 
k’ outgoing 
0 outer 
T top. 

not independent of each other. Thus the reciprocity 
rule 

FL fk L = &,&I\ (3) 

holds, which follows immediately from the definition 
of the angle factor. Furthermore, due to energy and 
particle conservation the enclosure rule 

must be fulfilled for a closed surface. In addition to 
the ordinary reciprocity rule there is an extended reci- 
procity rule which is valid for parallel or adjacent 

surfaces [I, 61. 
In order to solve the integral in equation (1) it 

is advantageous to replace the integration over the 
surface Fk. by an integration over the angular variable 
C2. The solid angle element extended by df’ at the 
space point r is given by 

n’ * i2 df” 
do= ~ ,-. 

Ir-r’l- 

coordinate system is chosen parallel to the z-axis of 
the spatial coordinate system. The other axis points 
in the direction of the projection of r into the xj+plane. 
Using a polar coordinate system the coordinates of 
I2 are given by (0, q) where q is the cosine of the polar 
angle and w the angle between the planes formed by 
the R and e, vectors and by the e, and e, vectors. The 
solid angle element can then be expressed by 

dC2 = do, dr/. (7) 

The components of the direction vector C2 along the 
unit normal n on the cylinder surfaces are given by 

n.S1 = 

i 

J(l -42)cosw if r = const 

rl if I’ = const. (8) 

The ranges allowed for Q and q are determined by the 
geometrical bounds of the cylinder surfaces. These 
can be calculated as a function of the position vector 
r using the characteristic equations which relate the 
coordinates on the emitting surface to those on the 

The angle factor can thus be written in the form 
^eZ 

1 

s s 

_*.\ 
t -- 
k k - nF, li 

df’ dR n*C2. (6) ,’ ‘\ ,’ 
M2, 

where A!& denotes the angular range into which radi- 
ation is emitted from Fk , which reaches the surface 
element df’ at r. 

Due to the geometry of the studied assembly, cyl- 
indrical coordinates r, 4. z are used for the spatial 
variable. The coordinate system is shown in Fig. 1. 
Since the radiant flux leaving a surface is assumed to 
be independent of the angle 4, the integration with 
respect to C#I can be performed and only one spatial 
integration over r or z remains. It is furthermore 
convenient to give the coordinates of the direction 
vector R in a coordinate system moving with the 
position vector r, as shown in Fig. 1. One axis of the FIG. I, Coordinates in cylinder geometry. 



Radiant interchange between two concentric cylinders 1097 

receiving surface. The characteristic equations may be 
written in the form 

rsinw = r’sinw’ (9) 

rcosw-r’cosw’ = y(z-z’) (10) 

where y is defined by 

(11) 

If the radiation is interpreted as particle transport, 
the characteristic equations describe the particle tra- 
jectories during motion through a void region. They 
are solutions of the equation of motion using the 
local r-z-co coordinate system described above. The 
geometrical meaning of the characteristic equations is 
illustrated in Fig. 2. While the azimuthal angle 
changes during particle motion, the value of ‘1 remains 
constant. The quantity y, which represents the tangent 
of the polar angle, is therefore also constant. Thus, 

considering the projection of the motion into the xy- 
plane, equation (9) gives the distance of the particle 
trajectory from the origin of the coordinate system 
and equation (10) the distance of two points on the 
trajectory. 

The q value for a transition from a point on the 
emitting surface to a point on the receiving surface is 

given by 

Z-Z’ 

‘I =J((Z-zzI)2+(rcoSw-r~cosw~ (12) 
or using equation (9) by 

z-z 

’ =J((~-~=I)~+(rcos~-aEJ(r’~-r~sin~w))~) 

(13) 

where 

0 

FIG. 2. Geometric illustration of the characteristic equations. 

(14) 

- 1 if 5 < 0’ ,< 7r. 

The integrations in equation (6) are first performed 
with respect to r] and w for a given value of r or z. 
While the integration limits of w are given in an easy 
way by the bounds of the cylinder surfaces, the inte- 
gration limits of n are calculated by the use of equation 
(13). Depending on the geometrical transitions either 
the difference z-z’ is constant and equal to the height 
of the cylinders or z’ is constant and equal to the 
cylinder height. Furthermore, r’ is constant and equal 
to the radius of the outer cylinder surface or of the 
top or bottom circular area. The subsequent inte- 
gration over r or z gives the final solution for the angle 
factor. 

For q < 0 there are eight geometrical transitions 
between the surfaces of the two concentric cylinders : 

1. outer + outer 5. top + inner 
2. outer + inner 6. inner -+ outer 
3. top -+ outer 7. outer + bottom 
4. top + bottom 8. inner --) bottom. 

The different situations are schematically shown in 
Fig. 3. The angle factors for the last three transitions 
can be calculated from the other transitions using the 
reciprocity rules. The angle factor for the transition 
top + inner can be determined from the angle factors 
for the transitions top + outer and top + bottom and 
by the use of the enclosure property. Thus, the angle 
factors for all transitions can be computed from those 

for the first four transitions. The angle factors for 
q > 0 can be treated in a similar way. 
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FIG. 3. The downward directed transitions between the 
surface elements. 
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3. COMPILATION OF THE ANGLE FACTORS 

In the following the analytical solutions for the four 
remaining angle factors will be given. In order to show 
the relationships of the angle factors for the different 
transitions, which are a consequence of the enclosure 
property, only a few abbreviations in the resultant 
expressions are used. The following nomenclature is 
employed. The height of the cylinders is denoted by 
H. The radii of the top and bottom surfaces are given 
by R, and Rs, respectively. The radius of the inner 
cylinder is denoted by R, and that of the outer cylinder 
by RO. The configurations of the surfaces and their 
geometrical dimensions are shown below in detail for 
the individual radiant transfers. It is furthermore con- 
venient to use dimensionless variables. Although 
other combinations are possible, the following vari- 
ables appear to be advantageous : 

Numerically evaluating the inverse trigonometric 
functions, which appear in the following expressions 
for the angle factors, the principal values have to be 
taken. 

FIG. 5. Illustration of the transfer outer -+ inner 

it can be handled more easily in practical applications. 
If the radius of the outer cylinder is equal to the radius 
of the inner cylinder, i.e. for Xo = X,, the angle factor 
lo,,, vanishes. If the radius of the inner cylinder is 
zero, i.c. if X, = 0, it follows that 

t o-0 = 2;-[1+2X,,-4’(1+4X,‘,)]. (16) 
0 

Tramfer outer + outt’r 

The transfer outer + outer describes the radiation 
transport from the interior surface of the outer cyl- 
inder to itself. The situation is illustrated in Fig. 4. 
The expression derived for the corresponding angle 
factor is 

I 
t 

[ 

4 
“-O 

- _ 
- 7rXo 

n(X, - X,) + arccosT 
0 

-J(l+4Xi) arctan 
J(U +4xw~-m 

XI 

+2X, arctan (24(X,‘, - Xf)) 
1 

( 15) 

Because of its compact form the above equation is 
clearer than that normally given in angle factor cata- 
logues [I, 7,8] and accordingly has the advantage that 

FIG. 4. Illustration of the transfer outer--t outer. 

Transfer outer + inner 

The configuration of surfaces for the transfer 
outer + inner is shown in Fig. 5. The radiation travels 
from the interior surface of the outer cylinder to the 
exterior surface of the inner cylinder. An analytical 
solution for the corresponding angle factor is avail- 
able in the literature [I, 7, 81. A new expression with 
a consistent nomenclature has been derived in this 
study and is given here for completeness. The result 
is 

- i (XX - Xf) -2X, arctan J(Xz, -X:) 

+J{P +(x”+x,m +(X,-X,Yl) 

x arctan 
[~+(~o+~,)21[~“-~,1 4 -__~ II [1+v,,-~mo+~,l 

(17) 

For Xo = X, the angle factor to_, becomes unity and 
for X, = 0 it vanishes. 

Transition top --t outer 

Figure 6 illustrates the surface configuration for the 
transfer top + outer. The radiation passes from an 
annular disk at the top end of cylinder to the interior 
surface of the outer cylinder. An analytical solution 
for this transfer has not apparently been obtained 
previously. The resultant expression has the form 



FIG. 6. fllustratio~ of the transfer top -+ outer. 

-2X, {arctan (~(~~-~~)+~(~~-~~)} 

- arctan J(Xi; - X:)) - 4 arccos -2 
T 

+&II +~~~,+~~~21r~+~~~-~T~21J 

x arctan Ji [I+(X,4~~~)2][Y2-(X~-X~)2] 

1+ (X, - Xm;+ X,)‘- Y2] 1 

-JW +(~o+x)2?r1 +w”-~d*lj 

Y = J(x;-x;,+;(x:,-x:). (22) 

-((X$-X+)arctan 
1 

&t-& 
If the bottom circle radius is equal to the radius of the 

--.--_- inner cylinder, i.e. if XB = X,, the angle factor tT_,B x _-x 
0 7 vanishes. For X, = 0, equation (21) goes over intathe 

equation 

X J( Y'-(X,-X,)* 
(x,$-lxiF >I1 

where 

08) 

Y = ~(~~-~~)+~(~~-~~). (19) 

If X, = 0, the following expression is obtained : 

-I -x:,+x$ (20) 

Radiant interchange between two concentric cylinders 

Transition top -+ boltom 
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The configuration of surfaces for the transfer top -+ 
bottom is shown in Fig. 7. The radiation exits from 
an annular disk at the top end of cylinder and is 
intercepted by an annular disk at the bottom end of 
cylinder. The outer radii of the annular disks may be 
different. An analytical expression for the cor- 
responding angle factor has not yet been given in the 
literature. The angle factor can be written as 

1 f - _.-____ 
T-R - n(X$ -x:, Z K 1 (X+ -XT) arccos x 

fi 

C : (X”, - Xf) arccos g 
T 

+2X,{arctan (J(X$-XZ)+J(X2,-X:)) 

- arctan J(X+ - Xf) - arctan J(PB - Xf)} 

x arctan 
Jt 

[I +(x,+x*)2[Y2-((xT-xg)2] 
I__ 
[I +(~,-~B)2l[GG+.W- YZl I 

x arctan 

where 

(21) 

which has already been given with a different 
nomenclature in an earlier paper 171. If the top circle 
radius is equal to the radius of the inner cylinder, i.e. 
if X, = X,, the expression in the square bracket of 
eauation (181 vanishes. ~ I FIG. 7. Illustration of the transfer top -+ bottom. 
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which has already been tabulated in a different 

form 171. 
Some of the algebraic expressions which appear in 

the above equations have simple geometric counter- 
parts. This can be shown, for example, if the pro- 
jection of the cylinders into the xy-plane is considered 
and a tangent on the inner cylinder surface is drawn. 
For the transition top -+ outer the quantity Yin equa- 
tion (19) is then the distance from the intersection of 
the tangent with the circle of the top annular disk to 
the intersection of the tangent with the outer cylinder 
surface. The same consideration can be made for the 

transition top -+ bottom. In order to write the result- 
ing equations in an even more compact form, it will 
be convenient to employ such expressions as abbrevi- 
ations which have a geometrical meaning. I. 

2. 

of the surfaces by an integration over the direction 
of the radiation emitted by that surface. Due to the 
enclosure property the angle factors for the different 
transitions are not independent ofeach other and their 
relationships can be shown if a consistent notation is 
used and only a few abbreviations arc employed in 
the resultant expressions. Even in this case the equa- 
tions can be brought into such a form that the 
expressions are not too lengthy. The angle factors thus 
obtained can be easily evaluated numerically for later 
use in heat transfer or neutral particle streaming cab 

culations in Y-Z geometry. 

4. CONCLUSIONS 

The angle-factor concept is used to calculate the 3. 
heat or neutral particle transport in systems con- 
taining voids embedded in material regions. In this 
study analytical angle factors for the radiant transfers 4. 
between the surface elements of two concentric cyl- 
inders are derived. By this the use of the angle factors 
in practical applications is simplified and the com- 
putational time necessary to evaluate the angle factors 
numerically can be reduced considerably. This is of 5. 
importance if configurations with a large number of 
area elements at the void surface are studied. 6. 

There are thirteen possible geometric transitions 
between the surface elements in the system considered. 7. 
The angle factors for nine of these transitions can be 
determined by using the angle-factor algebra. The 
remaining four angles are evaluated analytically. This 8. 
is accomplished by replacing the integration over one 
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